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Multiple genes have been studied for potential associations with lung cancer. The gene most frequently asso-
ciated with increased risk has been glutathione S-transferase M1 (GSTM1). The glutathione S-transferase enzyme
family is known to catalyze detoxification of electrophilic compounds, including carcinogens, therapeutic drugs,
environmental toxins, and products of oxidative stress. In this review, the authors summarize the available evi-
dence associating lung cancer with the GSTM1 gene. They describe results from an updated meta-analysis of 98
published genetic association studies investigating the relation between the GSTM1 null variant and lung cancer
risk including 19,638 lung cancer cases and 25,266 controls (counting cases and controls in each study only once).
All studies considered, the GSTM1 null variant was associated with an increased risk of lung cancer (odds ratio
(OR) ¼ 1.22, 95% confidence interval (CI): 1.14, 1.30), but no increase in risk was seen (OR ¼ 1.01, 95% CI: 0.91,
1.12) when only the five largest studies (>500 cases each) were considered. Furthermore, while GSTM1 null
status conferred a significantly increased risk of lung cancer to East Asians (OR ¼ 1.38, 95% CI: 1.24, 1.55), such
a genotype did not confer increased risk to Caucasians. More data regarding the predictive value of GSTM1
genetic testing are needed before population-based testing may be reasonably considered.

epidemiology; genetics; genome, human; glutathione S-transferase M1; glutathione transferase; GSTM1; lung
neoplasms; meta-analysis

Abbreviations: CI, confidence interval; CYP, cytochrome P-450; CYP1A1, cytochrome P-450 1A1; GST, glutathione
S-transferase; GSTM1, glutathione S-transferase M1; GSTT1, glutathione S-transferase T1; HuGE, Human Genome
Epidemiology; HuGENet, Human Genome Epidemiology Network; OR, odds ratio.

Editor’s note: This article also appears on the website of
the Human Genome Epidemiology Network (http://
www.cdc.gov/genomics/hugenet/).

The association between the glutathione S-transferase M1
(GSTM1) gene and lung cancer has been investigated in nu-

merous epidemiologic studies since glutathione S-transferase
(GST) was first suggested as a potential marker for suscep-
tibility to lung cancer in 1986 (1). Here we evaluate the
evidence for an association between the GSTM1 null poly-
morphism and lung cancer using methods developed by the
Human Genome Epidemiology Network (HuGENet) and
the Cochrane Collaboration (2), as listed in the HuGENet
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HuGE Review Handbook (3). We follow the full Human
Genome Epidemiology (HuGE) review format (Appendix
B in the HuGENet HuGE Review Handbook (3)).

GENE VARIANTS

The GSTs [EC 2.5.1.18 (4)] are a family of cytosolic
enzymes known to catalyze the detoxification of electro-
philic compounds, including carcinogens, therapeutic drugs,
environmental toxins, and products of oxidative stress, by
conjugation with glutathione (5). This conjugation reaction
also facilitates excretion and thus constitutes a detoxification
step. In addition to this role in phase II detoxification, GSTs
are able to modulate the induction of other enzymes and
proteins important in cellular functions, such as DNA repair,
and are therefore important in maintaining genomic integ-
rity (5). The GST enzymes could potentially play an impor-
tant role in susceptibility to cancer. Five distinct loci (alpha,
mu (M), theta, pi, and gamma) are known to encode the GST
enzymes. Here we consider the relation between the GSTM1
gene and lung cancer.

GSTM1 (OMIM number 138350 (6)) has been mapped to
the GST mu gene cluster on chromosome 1p13.3. Two var-
iants in GSTM1 have been identified: a deletion and a
substitution. The alleles of the substitution variant differ
by a C-to-G transition at base position 534, resulting in a
lysine-to-asparagine substitution at amino acid 172 (7, 8).
The deletion (GSTM1 null variant) has been examined ex-
tensively in epidemiologic studies. Personswith a homozygous
deletion of the GSTM1 locus have no enzymatic functional
activity. Phenotype assays have confirmed this lack of func-
tion by demonstrating a strong concordance (�94 percent)
between phenotype and genotype (9, 10). The GSTM1 gene
and the null variant have been the focus of previous HuGE
reviews of colorectal cancer (9) and squamous-cell carci-
noma of the head and neck (11) and previous pooled and
meta-analyses (table 1).

GENE VARIANT FREQUENCY

Several extensive reviews have summarized data on the
frequency of the GSTM1 null genotype (8, 9, 11). The per-
centages of persons who were homozygous for the GSTM1
null genotype across control groups in all studies ranged
from 18 to 66, with a median of 50 (see Web table 1, which
is posted on the Journal’s website (http://aje.oxfordjournals.
org/)). In the studies reporting controls as ethnically Cauca-
sian, the frequency of the GSTM1 null genotype ranged
from 42 percent to 61 percent (median, 50 percent). In stud-
ies reporting controls as ethnically of East Asian descent
(such as Chinese and Japanese), the frequency of the
GSTM1 null genotype ranged from 36 percent to 66 percent
(median, 51 percent). Studies conducted in Turkish popula-
tions showed both the lowest (18 percent) and highest (66
percent) reported frequencies of the GSTM1 null genotype.
GSTM1 heterozygosity is very rarely reported because of
the dominant effect of the null mutation in substantially
reducing protein function.

DISEASE

Lung cancer has been the most common cancer in the
world since 1985 (12). In 2002, 1.35 million new cases of
lung cancer were diagnosed, representing more than 12 per-
cent of all new cancer cases. Lung cancer is also the most
common cause of death from cancer, with 1.18 million
deaths, accounting for 17.6 percent of the world total (12).
Cancer rates have peaked among men in many parts of the
world, but rates are continuing to rise among women, with
almost half of all cases occurring in the developing world
(12, 13).

Lung cancer is generally divided into two types,
small-cell and non-small-cell, although there are other,
rarer types, such as carcinoid tumors. Small-cell lung cancer
accounts for approximately 20 percent of all lung cancer
cases and is almost exclusively caused by smoking. Non-
small-cell lung cancer accounts for approximately 80
percent of all lung cancers and includes three subtypes:
squamous-cell carcinoma (almost always caused by smok-
ing), adenocarcinoma, and large-cell undifferentiated car-
cinoma. Recent decades have seen an increase in the
frequency of adenocarcinoma and a decline in squamous-
cell carcinoma in developed countries. This could be
partly explained by an increase in the use of filtered
cigarettes (14).

Lung cancer is frequently diagnosed at an incurable stage.
Treatment for non-small-cell lung cancer (stages I, II,
and occasionally IIIa) is based on surgery with adjuvant
irradiation and/or chemotherapy. Patients with advanced
non-small-cell lung cancer usually receive only chemother-
apy. Surgery plays only a limited role in the management
of small-cell lung cancer. Depending on the stage of disease
and its complications, patients typically receive some
combination of radiation and chemotherapy. Prognosis is
poor in general, but it is considerably better in cases of
non-small-cell lung cancer than in cases of small-cell lung
cancer. For the approximately 70 percent of non-small-cell
lung cancers that are unresectable, survival time varies
greatly, from a few weeks to a few years, depending on the
functional status of the patient at the time of diagnosis. In
contrast, given its very aggressive nature, the median survival
of patients with small-cell lung cancer is approximately
1 year (15).

Tobacco smoking is clearly the strongest risk factor
for lung cancer, and despite its original description by
Rottman (16) in 1898, smoking-induced lung cancer con-
tinues to be a major public health problem. In 2001, 856,000
of the annual trachea, bronchus, and lung cancer deaths
(70 percent of the total number of such deaths) were at-
tributable to smoking (17). The risk among smokers as
compared with never smokers was increased 8–15 times
in men and 2–10 times in women (18). Cessation of smok-
ing is known to significantly reduce lung cancer risk,
with the most marked effect being observed in heavy smok-
ers, particularly among women (19). However, many per-
sons who smoke continue to do so. Other risk factors
for lung cancer include environmental tobacco smoke expo-
sure, diet, and occupational exposures such as soot and
asbestos (20).
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ASSOCIATIONS

In the last two decades, and especially in recent years, a
large body of medical and epidemiologic literature has de-
scribed genetic variants that appear to affect susceptibility to
lung cancer. Multiple genes—including several in the GST
group, cytochrome P-450 1A1 (CYP1A1) and several other
genes in the cytochrome P-450 (CYP) group, microsomal
epoxide hydrolase (mEH), aryl hydrocarbon receptor (AhR),
NAD(P)H quinone oxidoreductase 1 (NQO1), myeloperox-
idase (MPO), and N-acetyltransferase (NAT)—have been
variably associated with the disease (14, 21–25). These ef-
fects are at least partly independent of the effects of tobacco;
an excess risk of lung cancer has been observed in relatives
of lung cancer patients regardless of smoking status (26, 27).
While some of the familial risk could be due to environmen-
tal tobacco smoke exposure, a shared genetic risk is strongly
suggested. Regardless, the independent effect on lung can-
cer risk is strongly amplified by cigarette smoking (17, 23,
28). Variants in several genes have now been shown to be
associated with increased lung cancer risk specifically in
smokers; smokers with the ‘‘at risk’’ genotype are at a sig-
nificantly higher risk of lung cancer than smokers without
the ‘‘at risk’’ genotype. Several general reviews of the topic
are available (25, 29–33).

Seven meta-analyses and pooled analyses published to
date have been consistent in finding a modest but statisti-
cally significant increase in risk for persons carrying the null
variant (table 1); summary odds ratios from these meta-
analyses range from 1.17 to 1.54. For the present review,
we sought all population-based cohort, case-control, or
cross-sectional studies reporting associations between the
GSTM1 null variant and lung cancer. Cases had to be di-
agnosed with lung cancer, and controls had to be healthy or
hospital-based controls without cancer. Full details on the
methods used for collating and synthesizing data from these
association studies are provided in the Appendix. Our liter-
ature search retrieved 2,597 papers published up to March
2006. We identified 98 studies for inclusion in the meta-
analysis, and these are individually characterized in Web
table 1 (http://aje.oxfordjournals.org/).

The 98 studies were undertaken in a wide range of ethno-
geographic settings (Web table 1), with 46 percent (9,071 of
19,638) of cases being reported as Caucasian (data from 36
studies), 31 percent (6,088 of 19,638) of cases being re-
ported as East Asian (data from 42 studies), and 23 percent
(4,479 of 19,638) of cases being reported as of nonspecific
ethnicity (included African-American, mixed ethnicity, and
ethnicity not stated; data from 20 studies). Five studies ac-
counted for just over one quarter of all cases (26 percent;
5,112 of 19,638). Forty-four studies used general population
controls, 33 used hospital-based controls, and 21 used con-
trols from other sources (included healthy workers, friends
and spouses of cases, and source not stated). In several
studies, investigators also reported results broken down by
lung cancer clinical subtype, such as adenocarcinoma (40
studies), squamous-cell carcinoma (37 studies), small-cell
carcinoma (22 studies), or large-cell carcinoma (7 studies).

Using a random-effects meta-analysis with a dominant
genetic model, the combined odds ratio for lung cancer

among persons with the GSTM1 null genotype was 1.22
(95 percent confidence interval (CI): 1.14, 1.30) (see Web
figure 1, which is posted on the Journal’s website (http://aje.
oxfordjournals.org/)). The fixed-effect meta-analysis odds
ratio for lung cancer was 1.16 (95 percent CI: 1.12, 1.21).
There was some evidence of heterogeneity among these
studies (I2 ¼ 58 percent, 95 percent CI: 46, 66; p <
0.0001) and also of funnel plot asymmetry (Begg’s test,
p ¼ 0.003). Ethnicity accounted for some of this heteroge-
neity (21 percent of the between-study variance, p< 0.001).
Subgroup analyses were also undertaken (figure 1). When
studies were subgrouped by ethnicity, the odds ratio for
Caucasians was 1.04 (95 percent CI: 0.97, 1.11), with I2

equal to 22 percent (95 percent CI: 0, 48; p ¼ 0.117), and
the odds ratio for East Asians was 1.38 (95 percent CI: 1.24,
1.55), with I2 equal to 56 percent (95 percent CI: 34, 68; p<
0.0001). The odds ratios for general population and hospital-
based control groups were 1.21 (95 percent CI: 1.10, 1.33)
with I2 equal to 54 percent (95 percent CI: 31, 66; p <
0.0001) and 1.32 (95 percent CI: 1.14, 1.52) with I2 equal
to 69 percent (95 percent CI: 54, 77; p < 0.0001), respec-
tively. When only the large (>500 cases) studies were con-
sidered, the odds ratio for persons with the GSTM1 null
genotype was 1.01 (95 percent CI: 0.91, 1.12), with I2 equal
to 31 percent (95 percent CI: 0, 74; p¼ 0.216). Phenotyping
rather than genotyping was conducted in five studies which,
combined, gave an odds ratio of 1.63 (95 percent CI:
0.96, 2.74) with I2 equal to 75 percent (95 percent CI: 8.6,
88; p ¼ 0.0028).

The combined odds ratio for adenocarcinoma cases (n ¼
4,005; 40 studies) was 1.18 (95 percent CI: 1.05, 1.32), with
I2 equal to 48 percent (95 percent CI: 19, 63.3; p ¼ 0.0005),
for the GSTM1 null genotype. Small-cell carcinoma cases
(n ¼ 807; 22 studies) had an odds ratio of 1.35 (95 percent
CI: 1.12, 1.64), with I2 equal to 31 percent (95 percent CI: 0,
58; p ¼ 0.08). The combined odds ratio for squamous-cell
carcinoma cases (n ¼ 3,700; 37 studies) with the GSTM1
null genotype was 1.24 (95 percent CI: 1.10, 1.40), with I2

equal to 55 percent (95 percent CI: 30, 68; p < 0.0001). The
large-cell carcinoma cases (n ¼ 112; 7 studies) had an odds
ratio of 1.06 (95 percent CI: 0.58, 1.93), with I2 equal to 50
percent (95 percent CI: 0, 77; p ¼ 0.06).

INTERACTIONS

Gene-gene interactions

An association between enzymes in either the CYP or
GST families and a smoking-related cancer such as lung
cancer is biologically plausible. Most toxic compounds are
detoxified in two phases. In phase 1, atomic oxygen is in-
troduced in a reaction catalyzed by the CYP gene family.
This generates an oxygenated intermediate, which is a sub-
strate for phase 2, in which several families of enzymes
(including GST) add moieties that detoxify the substrate
(34). With cigarette smoking, benzo[a]pyrene is considered
a primary toxic byproduct, and it is metabolized by
CYP1A1 to benzo[a]pyrene epoxide, which is the reactive
intermediate. GSTM1 then converts this intermediate to
benzo[a]pyrene-S-glutathione. As a result, either high
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TABLE 1. Characteristics and findings of previously conducted meta- and pooled analyses of glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer

Study (ref. no.) Study details
No. of
studies

No. of
cases

No. of
controls

Main analysis Subgroup analyses

OR* 95% CI* Subgroup OR 95% CI

McWilliams et al.,
1995 (76)

Meta-analysis (using the Mantel-
Haenszel method) of results from
published case-control studies

11 1,593 2,135 1.41 1.23, 1.60 Squamous-cell carcinoma 1.49 1.22, 1.80

Adenocarcinoma 1.53 1.26, 1.85

Small-cell carcinoma 1.90 1.27, 2.84

Caucasian ethnicity 1.17 0.98, 1.40

Japanese ethnicity 1.60 1.25, 2.13

Phenotyping 1.80 1.29, 2.50

Genotyping 1.34 1.15, 1.55

D’Errico et al.,
1996 (77)

Meta-analysis (using the Mantel-
Haenszel method) of results from
published case-control studies

11 NS* NS NS NS Caucasian ethnicity 1.3 1.1, 1.6

Asian ethnicity 1.6 1.3, 2.0

Incident cases and
healthy controls 1.7 1.4, 2.2

Smokers only 1.8 1.4, 2.2

Squamous-cell carcinoma 1.5 1.2, 1.8

Small-cell carcinoma 1.9 1.3, 2.9

Adenocarcinoma 1.2 1.0, 1.5

Houlston,
1999 (78)

Meta-analysis (using a random-
effects model) of results from
published case-control studies

23 3,593 6,095 1.20 1.06, 1.35 Squamous-cell carcinoma 1.31 1.02, 1.68

Adenocarcinoma 1.26 0.97, 1.64

Small-cell carcinoma 1.40 1.01, 1.95

Caucasian ethnicity 1.08 0.97, 1.22

Asian ethnicity 1.38 1.12, 1.69

Phenotyping 2.12 1.43, 3.13

Genotyping 1.14 1.03, 1.25

D’Errico et al.,
1999 (79)

Meta-analysis (using both fixed-
effect and random-effects
models) of results from published
case-control studies

21 NS NS 1.34 1.21, 1.48 Caucasians: 1.21 1.06, 1.39

Smokers 1.22 0.96, 1.54

Phenotyping 1.69 1.01, 2.83

Genotyping, incident cases

Squamous-cell carcinoma 1.40 1.01, 1.95

Small-cell carcinoma 1.86 1.16, 2.97

Asians: 1.45 1.23, 1.70

Smokers 1.61 1.28, 2.02

Light smokers 1.24 0.87, 1.77

Heavy smokers 1.89 1.37, 2.60

Squamous-cell carcinoma 1.70 1.24, 2.33

Small-cell carcinoma 1.79 1.24, 2.59

Skuladottir et al.,
2005 (80)

Pooled analysis of results from
published and unpublished
case-control studies

3 320 618 0.78y 0.58, 1.06 NS

Ye et al.,
2006 (81)

Meta-analysis (using fixed-effect
and random-effects models)
of results from published papers,
with supplementary data from
study investigators

119z 19,729z 25,931z 1.18 1.14, 1.23 Random-effects overall 1.22 1.16, 1.30

Studies with >500 cases 1.04 0.95, 1.14

Shi et al.,
2007 (82)

Meta-analysis (using fixed-effect
and random-effects models) of
results from published studies
in Chinese populations

20 2,235 2,315 1.54 1.31, 1.80 Fixed-effect overall 1.49 1.32, 1.68
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Stucker et al.,
2001 (83)

Pooled analysis of results from
published case-control studies
from the GSEC* database

4 651 983 1.1§ 0.9, 1.4 GSTM1*-null and exposed
to asbestos

1.1 0.6, 2.1

Benhamou et al.,
2002 (84, 85)

Meta-analysis (using fixed-effect
and random-effects models) of
results from published
case-control studies

43 7,463 10,789 1.17 1.07, 1.27 Caucasian ethnicity 1.10 1.01, 1.19

Asian ethnicity 1.33 1.06, 1.67

African-American ethnicity 1.19 0.88, 1.62

Mixed ethnicity 1.10 0.90, 1.33

Ethnicity not stated 1.06 0.79, 1.40

Pooled analysis of results from
published and unpublished case-
control studies from the GSEC
database

21 3,940 5,515 1.1{ 1.0, 1.2 All subjects:

Never smokers 1.1 0.8, 1.4

Ever smokers 1.1 1.0, 1.2

Squamous-cell carcinoma 1.0 0.9, 1.1

Adenocarcinoma 1.1 0.9, 1.2

Small-cell carcinoma 1.2 1.0, 1.5

Caucasians 1.0 0.9, 1.1

Asians 1.1 0.8, 1.5

Males only 1.1 1.0, 1.2

Females only 0.9 0.8, 1.1

Never smokers:

Squamous-cell carcinoma 1.2 0.7, 2.0

Adenocarcinoma 1.0 0.7, 1.5

Small-cell carcinoma 1.5 0.6, 3.3

Caucasians 1.1 0.8, 1.5

Asians 0.7 0.4, 1.4

Males only 1.1 0.7, 1.7

Females only 1.0 0.7, 1.5

Ever smokers:

Squamous-cell carcinoma 1.1 0.9, 1.3

Adenocarcinoma 1.1 0.9, 1.3

Small-cell carcinoma 1.2 1.0, 1.5

Caucasians 1.0 0.9, 1.2

Asians 1.2 0.9, 1.7

Males only 1.1 1.0, 1.3

Females only 1.0 0.8, 1.3

Hung et al.,
2003 (86)

Pooled analysis of results from
published and unpublished case-
control studies in Caucasian
nonsmokers from the GSEC
database

13 296 1,571 1.15# 0.86, 1.53 Adenocarcinoma 0.99 0.67, 1.47

GSTM1 null and CYP1A1*
MspI wt/wt 0.69 0.31, 1.54

GSTM1-positive and
CYP1A1 MspI mt carrier 1.00 0.31, 3.23

GSTM1 null and CYP1A1
MspI mt carrier 2.44 0.94, 6.33

GSTM1 null and CYP1A1
Ile/Ile 0.78 0.43, 1.43

GSTM1-positive and
CYP1A1 Val carrier 1.16 0.37, 3.69

GSTM1 null and CYP1A1
Val carrier 4.67 2.00, 10.9

Table continues
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TABLE 1. Continued

Study (ref. no.) Study details
No. of
studies

No. of
cases

No. of
controls

Main analysis Subgroup analyses

OR* 95% CI* Subgroup OR 95% CI

Vineis et al.,
2004 (87)

Pooled analysis of results from
published and unpublished case-
control studies in Caucasians
genotyped for both GSTM1 and
CYP1A1 from the GSEC database

10 1,361 1,247 NS NS GSTM1 null and CYP1A1
MspI mt/mt 2.8 0.9, 8.4

GSTM1 null and GSTT1* null 1.0 0.6, 1.5

Raimondi et al.,
2005 (88)

Pooled analysis of results from
published and unpublished case-
control studies in Caucasian
nonsmokers from the GSEC
database

20 (Caucasians) 545 2,149 1.09 0.88, 1.35 Healthy controls 1.03 0.77, 1.37

Hospital-based controls 0.88 0.4, 1.91

Adenocarcinoma 0.91 0.68, 1.22

Squamous-cell carcinoma 1.30 0.78, 2.18

3 (Asians) 96 213 1.00 0.6, 1.67 NS

Vineis et al.,
2007 (47)

Pooled analysis of results from
published and unpublished case-
control studies of gene-gene
interactions from the GSEC
database

6 611 870 NS NS All subjects:

CYP1A1 wild-type, GSTT1
null, and GSTM1 null 1.35 0.87, 2.10

CYP1A1 MspI, GSTT1
null, and GSTM1 null 1.57 0.81, 3.01

CYP1A1 Val, GSTT1
null, and GSTM1 null 2.43 0.98, 5.99

CYP1A1 Asn, GSTT1
null, and GSTM1 null 8.25 2.29, 29.77

Adenocarcinoma in smokers:

CYP1A1 wild-type, GSTT1
null, and GSTM1 null 0.72 0.30, 1.70

CYP1A1 MspI, GSTT1
null, and GSTM1 null 2.83 1.22, 6.57

CYP1A1 Val, GSTT1
null, and GSTM1 null 4.61 1.64, 12.98

CYP1A1 Asn, GSTT1
null, and GSTM1 null 10.48 2.40, 45.75

Squamous-cell carcinoma
in smokers:

CYP1A1 wild-type, GSTT1
null, and GSTM1 null 1.92 1.06, 3.45

CYP1A1 MspI, GSTT1
null, and GSTM1 null 1.93 0.73, 5.03

CYP1A1 Val, GSTT1
null, and GSTM1 null 3.32 1.09, 10.12

CYP1A1 Asn, GSTT1
null, and GSTM1 null 8.26 1.40, 48.64

* OR, odds ratio; CI, confidence interval; NS, not specified; GSEC, International Collaborative Study on Genetic Susceptibility to Environmental Carcinogens; GSTM1, glutathione S-transferase
M1; CYP1A1, cytochrome P-450 1A1; GSTT1, glutathione S-transferase T1.
yReported pooled-analysis odds ratio was adjusted for sex, age, and study.
z Some studies appeared to be included more than once in this meta-analysis, and it is unclear how the numbers of cases and controls were calculated.
§ Reported pooled-analysis odds ratio was adjusted for age, sex, smoking, and study.
{ Reported pooled-analysis odds ratio was adjusted for age, sex, and study center.
# Reported pooled-analysis odds ratio was adjusted for study.

6
C
a
rls

te
n
e
t
a
l.



CYP1A1 activity (conferred by the MspI ‘‘m2’’ variant
of the CYP1A1 gene) or low GSTM1 activity (conferred
by the null variant of the GSTM1 gene), or particularly their
combination, will increase benzo[a]pyrene levels and there-
fore toxicity (35). Further mechanistic support is provided
by research that correlates the GSTM1 null genotype
with the DNA adducts (polycyclic aromatic hydrocarbon–
deoxyguanosine monophosphate) that are known markers
for carcinogenesis (36).

Few studies have investigated the role of gene-gene in-
teractions in lung cancer, mainly because of the large num-
bers of participants that would be required to provide
adequate statistical power. Nakachi et al. (37) found that
persons with the CYP1A1 MspI or Ile/Val variant and per-
sons with the GSTM1 null variant with low levels of ciga-
rette smoking were at high risk of lung cancer, with odds
ratios of 16.0 (95 percent CI: 3.76, 68.02) and 41.0 (95 per-
cent CI: 8.68, 193.61), respectively. Although the evidence
suggests that the risk of lung cancer is increased in carriers
of both the GSTM1 null variant and the CYP1A1 variant, the
wide confidence intervals obtained leave the results difficult
to interpret (38–45). Studies investigating the interaction
between the GSTM1 null variant and the glutathione
S-transferase T1 (GSTT1) null variant have observed con-
flicting results, showing both reduced risk (42, 46) and in-
creased risk (42, 44) of lung cancer for double null carriers.

Recently, Vineis et al. (47) conducted a pooled analysis
through the GSEC (International Collaborative Study on

Genetic Susceptibility to Environmental Carcinogens) ini-
tiative (48), including six case-control studies with 611 lung
cancer cases and 870 controls genotyped for GSTM1 null,
GSTT1 null, and CYP1A1 MspI, Ile/Val, and Thr/Asn. As-
sociations with lung cancer were observed in carriers of
either CYP1A1 MspI, Ile/Val, or Thr/Asn and the double
deletion of both GSTM1 and GSTT1. For the CYP1A1
Thr/Asn and double GSTM1 and GSTT1 deletion carriers,
an odds ratio of 8.25 (95 percent CI: 2.29, 29.77) was ob-
served. The gene-gene interaction between GSTM1 and
CYP1A1, simplistically summarized here, is the topic of
another registered HuGE review (49).

Gene-environment interactions

An increase in lung cancer risk is favored when the effect
of increased smoking is assessed along with that of GSTM1
variation (50–53), but at least one study (54) has demon-
strated an opposite effect, that is, an increased odds ratio at
a lower level of smoking. The discrepancy may be based on
the lack of consistent controls for concomitant polymor-
phisms (e.g., multiple variants of CYP and GST) other than
the primary one (e.g., GSTM1) being tested for in an in-
dividual study. In theory, induction of some polymorphisms
(e.g., CYP1A1 MspI) by cigarette smoke leads to increased
carcinogen exposure, while induction of others leads to de-
creased carcinogen exposure. Studies controlling for all rel-
evant polymorphisms have been lacking, making it difficult

Studies with
>500 cases

General controls

Hospital controls

Caucasians

East Asians

Adenocarcinoma

Large-cell

Small-cell

Squamous-cell

Use of phenotyping

Total

Subgroup

5

44

33

36

42

40

7

22

37

5

98

No. of
studies

5,112

7,591

5,745

9,071

6,088

4,005

112

807

3,700

579

19,638

No. of
cases

4,739

10,883

6,416

12,237

7,222

12,583

2,157

6,744

11,983

612

25,266

No. of
controls

1.01 (0.91, 1.12)

1.21 (1.10, 1.33)

1.32 (1.14, 1.52)

1.04 (0.97, 1.11)

1.38 (1.24, 1.55)

1.18 (1.05, 1.32)

1.06 (0.58, 1.93)

1.35 (1.12, 1.64)

1.24 (1.10, 1.40)

1.63 (0.96, 2.74)

1.22 (1.14, 1.30)

OR (95% CI)

30.8

53.6

68.9

22.4

55.8

47.8

50.3

31.3

54.6

75.2

57.7

I2

10.5 2

Odds ratio

FIGURE 1. Results from a random-effects meta-analysis of studies of glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer,
according to various characteristics. OR, odds ratio; CI, confidence interval.
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to fully assess interactions between smoking and genotype.
Therefore, it is currently unknown whether any potentiating
interaction is occurring. Stucker et al. (53) have argued that
the GSTM1 null genotype and cigarette smoking are inde-
pendent risk factors for lung cancer but are not synergistic.
The interaction between GSTM1, smoking, and lung cancer
has been registered as the topic of a separate HuGE review
(49).

There are several dietary compounds and toxic exposures
that will also need to be controlled for in order to fully
elucidate gene-environment interactions related to lung cancer
risk. The most notable of these are isothiocyanates, found in
high concentrations in cruciferous vegetables. London et al.
(55, 56) found a decreased risk (odds ratio (OR) ¼ 0.36, 95
percent CI: 0.20, 0.63) associated with the GSTM1 null
genotype when patients were stratified by urinary isothio-
cyanate level, and Spitz et al. (57) found increased risk in
persons reporting lower isothiocyanate intake. Lewis et al.
(58, 59) found decreased risk with higher consumption of
cruciferous vegetables (OR ¼ 0.27, 95 percent CI: 0.06,
1.33), but the wide confidence interval makes this finding
inconclusive.

Other potentially significant interactions include use of
smoky coal, which Lan et al. (60) found to confer increased
risk in GSTM1-null subjects, and rural living, which con-
ferred increased risk in one study (61). There have thus far
been mixed data for an effect of vitamin C intake. Garcia-
Closas et al. (62) found a protective effect, but London et al.
(54) found no significant association between vitamin C in-
take and GSTM1 status for lung cancer risk. Both Woodson
et al. (63) and London et al. (54) failed to find significantly
altered odds ratios for lung cancer when a GSTM1-null pop-
ulation was stratified by b-carotene intake.

LABORATORY TESTS

Molecular methods for determining GSTM1 genotype
have been reviewed by Cotton et al. (9).

POPULATION TESTING AND POTENTIAL HEALTH
APPLICATIONS

Given the uncertain positive predictive value of GSTM1
genetic testing as a predictor for lung cancer risk, the clin-
ical value of such testing is questionable. From a public
health perspective, an optimistic goal would be to use
genetic testing to supplement current efforts to motivate
people to stop smoking, but there are considerable obstacles
to achieving this goal (64). The theory that knowledge of
polymorphism-related lung cancer may somehow guide be-
havioral change (given the ‘‘voluntary’’ nature of smoking)
has been tested by Audrain et al. (65) and Lerman et al. (66).
They measured motivation to quit, ultimate quitting rates,
and depressive symptoms in patients randomized to receive
quit-smoking counseling, patients randomized to receive
counseling plus biofeedback, and a third group in which
genotype testing was added to these twomethods.While per-
sons who were told of their genetic predisposition to cancer
experienced short-term positive gains in perceived risk, per-

ceived quitting benefit, and fear arousal, cessation rates
were not affected by genetic risk knowledge. Initially, the
biomarker group experienced increased levels of depressive
symptoms, but these were not maintained over 12 months.
The authors suggested (65, 66) that genetic susceptibility
information might prove more compelling to persons who
received more intensive counseling and/or newer pharma-
cologic support (nicotine patches, etc.) than was provided in
these studies.

In a subsequent study by McBride et al. (67), in which
smokers were randomized to ‘‘usual care’’ or biofeedback
(consisting of GST genetic testing and counseling), there
was a greater prevalence of smoking abstinence in the bio-
feedback group at 6 months but not at 12 months (although
a trend persisted at 12 months). Interestingly, the difference
at 6 months was based generically on the biofeedback/coun-
seling process; no difference was noted between persons
told that they had the GSTM1-null genotype (‘‘susceptible’’)
and persons told that they were GST-normal (‘‘not suscep-
tible’’). On the basis of these limited trials, there is no cur-
rent justification for any population-based testing. However,
this question will need to be revisited as gaps in our un-
derstanding of this issue are addressed through further
research.

CONCLUSIONS AND RECOMMENDATIONS FOR
RESEARCH

In this paper, we have reviewed available evidence for the
role of GSTM1 in predisposition to lung cancer. We con-
ducted an updated meta-analysis of association studies in-
volving a total of 19,638 cases and 25,266 controls from 98
studies, carefully avoiding the double-counting of partici-
pants in the analysis. The GSTM1 null variant was observed
to be associated with a small increase in lung cancer risk
(OR ¼ 1.22, 95 percent CI: 1.14, 1.30), although no in-
creased risk was apparent when only the five largest studies
(>500 cases each) were considered (OR ¼ 1.01, 95 percent
CI: 0.91, 1.12). There was a suggestion that the GSTM1 null
variant may confer increased risk in persons with an East
Asian ethnic background (OR ¼ 1.38, 95 percent CI: 1.24,
1.55), with a lack of convincing evidence for persons of
Caucasian ethnicity (OR ¼ 1.04, 95 percent CI: 0.97, 1.11).
Although the studies that examined the relation of GSTM1
phenotype with lung cancer found a larger association
(OR ¼ 1.63, 95 percent CI: 0.96, 2.74), the confidence
intervals were wide.

Several methodological issues should be considered in
interpreting these findings. First, the key threat to literature-
based reviews and meta-analyses is the possibility of re-
porting bias (the possibility that only the most exciting find-
ings are available in the literature). We cannot rule out this
possibility, not least because we observed a lack of associ-
ation in the largest studies, which may be less prone to
selective reporting. Second, higher levels of smoking may
accentuate or minimize the effect of adverse genotypes on
lung cancer risk. Tobacco smoking is the most firmly estab-
lished risk factor for lung cancer (28, 68, 69). However,
reporting of smoking exposure is not standardized, varies
considerably across studies, and is difficult to address
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adequately in a review like this. Vineis et al. (70) have
shown that the relation between lung cancer and smoking
may level off at approximately 20 cigarettes per day. Third,
polymorphism frequencies are known to vary by ethnicity
(71), but the effect of this on risk has not yet been ade-
quately studied. In the studies we identified, the frequencies
of the GSTM1 null genotype among controls were similar in
Caucasian and East Asian populations. The observed differ-
ence in the magnitude of the association between these pop-
ulations does not appear to be explained by differences in
genotype frequencies, suggesting more complex factors that
warrant further investigation. Fourth, some studies have
suggested that females may accumulate more adducts than
males, even when smoking level and other confounding
factors are controlled for (72). The clinical significance of
this finding remains to be studied. When studies that
reported results for females only (n ¼ 6) and males only
(n¼ 7) were subgrouped, odds ratios of 1.50 (95 percent CI:
1.06, 2.12) and 1.08 (95 percent CI: 0.91, 1.28), respec-
tively, were observed for the GSTM1 null genotype and lung
cancer (using a random-effects meta-analysis; data not oth-
erwise shown).

It also appears that the effect of theGSTM1 genotype may
vary according to histologic subtype. In our analyses, we
evaluated the risk for each of the three major lung cancer
subtypes. In spite of the variation in subtypes between stud-
ies, the odds ratios were elevated for squamous-cell carci-
noma (OR ¼ 1.23, 95 percent CI: 1.09, 1.39), small-cell
carcinoma (OR ¼ 1.33, 95 percent CI: 1.10, 1.60), and
adenocarcinoma (OR ¼ 1.13, 95 percent CI: 1.02, 1.25)
when each type was considered independently. Our analyses
indicated that previous meta-analyses have overestimated
the effect of the GSTM1 null variant on each of the three
main histologic subtypes (table 1). This is an area in which
more research is warranted.

In addition to these questions, contributions from other
gene variants may also be responsible for differences be-
tween studies. For example, genetic polymorphisms in the
CYP family may modulate nicotine metabolism (73) or its
effects on dopamine receptors (66) and therefore addiction.
Possible interaction between GSTM1 and these CYP geno-
types, and other polymorphisms theorized to modulate lung
cancer risk, were infrequently investigated and rarely ac-
counted for in the studies outlined in Web table 1. Bartsch
et al. (74) have suggested that the interactions result in
a greater-than-additive risk. These effect-modifying interac-
tions were not taken into account in our analyses of the
association between lung cancer and GSTM1 genotype.
Realistically, however, comprehensive studies of genetic
and environmental factors contributing to lung cancer may
not be feasible until chip array technology allows for ready
characterization of multiple relevant genes. Furthermore,
making use of such technology when it becomes available
will require large study samples in order to generate suffi-
cient power to evaluate multiple potential contributors to
risk. Researchers will need to consider the ability of the
latest technology to address these concerns.

Because of the complex pathways of carcinogen metab-
olism and the various enzymes involved, any single gene
might play a smaller, more limited role in the risk of lung

cancer. In this review, we observed a modest effect of the
GSTM1 null variant on lung cancer risk, and we would
therefore encourage much larger studies than have tradition-
ally been conducted in this area. Larger, more comprehen-
sive studies would allow for meaningful stratification and
allow stronger conclusions to be drawn regarding the effects
of study characteristics such as ethnicity or histologic sub-
type. Larger studies would also permit evaluation of gene-
gene and gene-environment interactions, factors that are
clearly important in complex diseases such as lung cancer.
In the process of exploring such research, it is imperative to
use foresight in targeting it towards clear applicability to
public health (64).

Editor’s note: References 89–228 are cited in Web table 1,
which is posted on the Journal’s website (http://aje.
oxfordjournals.org/).
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APPENDIX

Selection criteria and identification of studies

We sought all population-based cohort, case-control, and
cross-sectional studies reporting associations between the
GSTM1 null variant and lung cancer. Cases had to be di-
agnosed with lung cancer, and controls had to be healthy or
hospital-based controls without cancer. Electronic searches,
not limited to the English language, were performed using
MEDLINE, EMBASE, BIOSIS, and the Science Citation
Index, and we also perused the reference lists of retrieved
articles and previous meta-analyses. The latest searches
were undertaken on March 13 and 14, 2006. The MEDLINE
search strategy, using PubMed Medical Subject Headings
(MeSH), for assessing the association between the GSTM1
null variant and lung cancer was the following: (glutathione
S-transferase* or glutathione S transferase* or glutathione

transferase[MeSH] or GSTM1 or aryl hydrocarbon hydrox-
ylases[MeSH]) and (lung or respiratory tract or lung
[MeSH] or cancer* or neoplasm* or neoplasms[MeSH] or
carcino* or carcinoma[MeSH] or tumour* or tumor* or
tumour[MeSH] or DNA adduct* or DNA adducts[MeSH]
or squamous cell carcinoma* or large-cell carcinoma* or
small cell carcinoma* or adenocarcinoma* or non-small
cell carcinoma* or lung neoplasms[MeSH] or respiratory
tract neoplasms[MeSH]). Two reviewers (C. C. and G. S. S.)
scanned relevant articles identified by the search indepen-
dently on the basis of title, keywords, and abstract (where
available) and rejected on an initial screen any article that
clearly did not meet the inclusion criteria. The full text of all
remaining articles was obtained for further evaluation by the
same two reviewers. In the case of uncertainty about eligi-
bility, a third reviewer (A. J. F.) was consulted before a
decision was made.

Data collection and analysis

Data were extracted independently by two reviewers
(A. J. F. and G. S. S.), using a prepiloted data extraction
form (with any discrepancies being resolved by discussion).
Variables on which information was collected were study
design; geographic location; genotype frequencies, by cat-
egorical disease outcome (including clinical subtypes if pre-
sented); mean ages of cases and controls; proportions of
males and persons in ethnic subgroups (defined as European
continental ancestry, East Asian ancestry, or other, including
African-American); genotyping method used; and blinding
of laboratory workers to participant case-control status.
Where multiple publications on the same study were iden-
tified, data were extracted from each article and the most
complete and up-to-date information was identified. Studies
that presented results for different ethnic groups or different
control sources were considered as a single study for the
overall analysis but were considered as individual studies
for the ethnicity and control-source subanalyses, in order to
avoid double-counting of individuals.

Primary analyses were conducted using a dominant in-
heritance model. Meta-analyses used a standard approach,
weighting by precision and incorporating random effects to
allow for the variation in true associations across studies.
Funnel plots were used to assess assumptions involved in
meta-analysis and to explore the relation between precision
and magnitude of association. Consistency of the gene effect
sizes across studies was assessed using the I2 statistic, which
describes the percentage of total variation in point estimates
attributable to genuine variation rather than sampling error
(75). Variation was further explored by prespecified sub-
grouping of studies according to sample size (<100, 100–
499, or �500 cases), ethnicity (Caucasian, East Asian,
other), source of controls (general population, hospital-
based, other), study design (retrospective, prospective),
and blinding of genotype to disease outcome (yes, no, un-
known). Sensitivity analyses were also conducted by per-
forming fixed-effect meta-analyses. All ranges presented are
95 percent confidence intervals unless otherwise specified.
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